

Statistical Methodology to Optimize Testing for Small Arms

DISTRIBUTION STATEMENT A. Approved For Public Release.

AORS, NOV 2014

Kristina Bevec 410.278.4720 Kristina.m.bevecmohl.civ@mail.mil

Agenda

- □ Background
- DLR Model
- ☐ Instantaneous MRBF Results
- Comparison with Constant Reliability Assumption
- ☐ Comparing Factors
- ☐ Example Application
- Benefits of New Method

Background (1/2)

- AMSAA provided a comprehensive review of small-arms reliability T&E in 2013 including the
 - Confirmation of reliability test results from 2006 to 2012,
 - Sufficiency of reliability T&E methods,
 - And the appropriateness of current Individual Carbine reliability requirement.
- ☐ Test data prior to 2013 shows:
 - The failure probability may increase over the life of the weapon
 - The probability is not constant (e.g. distinct tread—riser-tread step functions)
 - Variability in amount of change across weapons (e.g. total amount of change)
 - Variability in when significant changes occur (e.g. when/how often 'steps' occur)

Significant weapon-to-weapon variability existed in previous small arms.

Background (2/2)

- Numerous findings from review included
 - Significant weapon-to-weapon variability;
 - Future testing should be constructed using DoE principles;
 - Future reliability requirements should include a system-level metric (weapon, ammo, magazine,...);
 - Continue engineering efforts to understand & resolve current component interfacing issues.

A more rigorous statistical model needed to assess small-arms reliability

DLR Model (1/2)

- Inputs include weapons and their failures from past and present test events
- Include factors of interest within dynamic model framework
 - Allows for comparisons between tests, weapons, ammo, magazines, etc.
- ☐ Use dynamic Bayesian approach to account for changing reliability over time
 - Provides updated reliability assessment by round
 - Computationally efficient
 - Binomial data with Non-informative Beta prior -> data-driven

Increase the amount of test data and factors may increase the certainty of their overall influence on system reliability

DLR Model (2/2)

- Expectation-Maximization algorithm used to estimate model evolution parameters
 - Determines the β parameters that maximize the log likelihood of the observed data, where

$$\vec{\beta} = \{\beta_0, \beta_1, ..., \beta_N\}$$

$$\beta_i = G\beta_{i-1} + W$$

☐ Uses logistic regression form with probability of failure on *i*th round given by:

$$\log \frac{p_i}{1 - p_i} = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_N x_{i,N}$$

Indicator variables for factors such as weapon, ammo, new/rebuilt, etc.

Instantaneous MRBF Results

- ☐ Plot instantaneous MRBF by round
 - Reflects dynamic nature of failures as they occur throughout the test
 - Also impacted by information from other weapons within test

Comparison with Constant Reliability Assumption

Comparing Two Factors

- Use model parameters to understand differences between factors within model
 - Parameters are approximately jointly Normal, which allows for interval estimates

Examining Model Fit

- Model fit using average results can be misleading
- Averages can be skewed by small samples with variation between weapons

Model performs as expected; Provides reasonable description of observed data

Example Application

2 Weapons, 2 Ammunition types x Total rounds per each case

Cum Failures

Including Individual Gun as Factor

Individual gun can be easily added to improve fit; Still allows for comparisons between Weapon 1/Weapon 2, etc.

Comparison Results: Weapon 1 vs. Weapon 2

No evidence of significant difference between weapons

Comparison Results: Ammo1 vs. Ammo 2

Evidence of minor differences as few rounds fired Significant differences exist as more rounds fired

Benefits of New Method

- □ Handles dynamic trends in reliability
- Includes interval estimates
- □ Allows for straightforward comparisons between factors (e.g. weapon, ammo, new vs. rebuilt, etc.)
 - Determines the amount of influence a factor has on overall weapon reliability
 - Results in a more rigorously designed test, which could potentially reduce cost during the weapon's developmental and operational testing
- □ Can pool data from past and previous tests to update assessments over time
- □ DLR approach can be used to appropriately size future tests
 - Number of weapons and ammunition needed to achieve reliability estimate